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Annotation:  

In  this paper provided  a number of theoretical and logical foundations, which is impossible to correctly 

calculate the partial derivatives of functions of many variables. Typical variants of a function of many 

variables are given, as well as methodological recommendations for calculating partial derivatives using 

a formula and definition of problem. Solutions to numerous problems are shown accompanied by useful 

methodological advice that allows you to correctly calculate derivatives and differentials. A minimum 

of theoretical knowledge is given, which is necessary to calculate the partial derivatives of specific 

functions, as well as tasks and exercises for independent work. 

 

Keywords: increment of a function, continuity at a point, derivative rules, expression, definition of a 

partial derivative, equality, limit, continuity of partial derivatives, tangent plane equation, paraboloid, 

argument. 

Practice shows that not all students understand the theoretical, logical foundations, without which it is 

impossible to correctly calculate partial derivatives by formula and by definition. Some people know 

the theoretical foundations of the position, but they know them formally. 

When solving problems, everyone must know (possess) the minimum theoretical knowledge that is 

necessary to compute a partial derivative for a particular function [1, p.191]. 

In order to confirm the above remarks, on the basis of several functions given in this work, a test of the 

environment of university students was conducted. According to the results, if we draw conclusions, 

both of them made some mistakes. The results of right and wrong are 45 to 55 percent. This, of course, 

is not a good result. 

In this article, we will present typical functions that students can apply this knowledge to solving other 

problems when further studying partial differential computing. 

Example 1. Prove that the  

u= {

𝑥3+𝑦3

𝑥2+𝑦2
, 𝑥2 + 𝑦2 ≠ 0,

0,      𝑥2 + 𝑦2 = 0,
 

has partial derivatives at O(0,0), but is not differentiable at this point. 

Proof. Since 

𝑢(𝑥, 0) =  {
𝑥, 𝑥 ≠ 0,
0, 𝑥 = 0,

  

i.e. 

𝑢(𝑥, 0) = 𝑥,  

that 
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𝜕𝑢

𝜕𝑥
(0,0) =

𝑑

𝑑𝑥
𝑢(𝑥, 0)|𝑥=0 = 1. 

In the same way, we get 

𝜕𝑢

𝜕𝑦
(0,0) = 1. 

And so the function has partial derivatives at point O(0,0).𝑢(𝑥, 𝑦) 

Let us prove that the function is not differentiable at point O(0,0).𝑢(𝑥, 𝑦) 

Suppose the opposite. Then the increment of the function at this point, equal 

∆𝑢 = 𝑢(∆𝑥, ∆𝑦) − 𝑢(0,0) =
∆𝑥3 + ∆𝑦3

∆𝑥2 + ∆𝑦2
, 

to can be represented as  

∆𝑢 =
𝜕𝑢

𝜕𝑥
(0,0)∆𝑥 +

𝜕𝑢

𝜕𝑦
(0,0)∆𝑦 + 𝑜(𝑝), 

Where is. 𝑝 = √∆𝑥2 + ∆𝑦2 

Since 

𝜕𝑢

𝜕𝑥
(0,0) =

𝜕𝑢

𝜕𝑦
(0,0) = 1. 

From the condition of differentiability we derive 

∆𝑥3 + ∆𝑦3

∆𝑥2 + ∆𝑦2
= ∆𝑥 + ∆𝑦 + 𝑜(𝑝), 

either i.e 

−
∆𝑥∆𝑦2 + ∆𝑥2∆𝑦

∆𝑥2 + ∆𝑦2
= 𝑜 (√∆𝑥2 + ∆𝑦2) , 

. 

lim
∆𝑥→0
∆𝑦→0

∆𝑥∆𝑦2 + ∆𝑥2∆𝑦

(∆𝑥2 + ∆𝑦2)
3

2⁄
= 0. 

Let us show that this limit does not actually exist.  

Let them strive to zero in such a way that  ∆𝑥 и ∆𝑦∆𝑦 = 𝑘∆𝑥(𝑘 ≠ 0). 

Then we'll get  

lim
∆𝑥→0
∆𝑦→0

(∆𝑦=𝑘∆𝑥)

∆𝑥∆𝑦2 + ∆𝑥2∆𝑦

(∆𝑥2 + ∆𝑦2)
3

2⁄
=  lim

∆𝑥→0

∆𝑥3(𝑘2 + 𝑘)

∆𝑥3(1 + 𝑘2)
3

2⁄
=

𝑘2 + 𝑘

(1 + 𝑘2)
3

2⁄
. 

Since the magnitude takes different values for different , the specified limit does not exist. It follows 

that the assumption made is incorrect, and therefore the function is differentiable at point 

O(0,0).
𝑘2+𝑘

(1+𝑘2)
3

2⁄
𝑘𝑢(𝑥, 𝑦) 

Example 2. Prove that the  
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𝑢 = {
(𝑥2 + 𝑦2) sin

1

√𝑥2 + 𝑦2
,   𝑥2 + 𝑦2 ≠ 0,

0,                         𝑥2 + 𝑦2 = 0,

  

has partial derivatives in the neighborhood of the O(0,0) point and is differentiable at the O, but the 

partial derivatives are not continuous at the O point. 

Proof. At all points except the point O(0,0), partial derived functions can be found by calculating the 

derived functions according to the usual rules𝑢 = (𝑥, 𝑦) 

(𝑥2 + 𝑦2) sin
1

√𝑥2 + 𝑦2
. 

For example 

𝜕𝑢

𝜕𝑥
(𝑥, 𝑦) = 2𝑥 𝑠𝑖𝑛

1

√𝑥2 + 𝑦2
+ (𝑥2 + 𝑦2) 𝑐𝑜𝑠

1

√𝑥2 + 𝑦2
(−

1

2
) (𝑥2 + 𝑦2)

−3
2⁄ 2𝑥 

= 2𝑥 𝑠𝑖𝑛
1

√𝑥2 + 𝑦2
−

𝑥

√𝑥2 + 𝑦2
𝑐𝑜𝑠

1

√𝑥2 + 𝑦2
  

at 

𝑥2 + 𝑦2 ≠ 0. 

At point O(0,0) this formula loses its meaning. However, this does not mean that it does not exist, since 

the expression for was obtained under the condition . To find it, let's use the definition of a partial 

derivative. Since 
𝜕𝑢

𝜕𝑥
(0,0)

𝜕𝑢

𝜕𝑥
(𝑥, 𝑦)𝑥2 + 𝑦2 ≠ 0

𝜕𝑢

𝜕𝑥
(0,0) 

𝑢(𝑥, 0) = {
𝑥2 𝑠𝑖𝑛

1

|𝑥|
,  𝑥 ≠ 0,

0, 𝑥 = 0,

 

that 

∆𝑥𝑢 = 𝑢(∆𝑥, 0) − 𝑢(0,0) = ∆𝑥2 𝑠𝑖𝑛
1

|∆𝑥|
. 

Hence 

lim
∆𝑥→0

∆𝑥𝑢

∆𝑥
= lim

∆𝑥→0
∆𝑥 sin

1

|∆𝑥|
= 0 , 

i.e. 
𝜕𝑢

𝜕𝑥
(0,0) = 0.  

Similarly, it can be proved that 

𝜕𝑢

𝜕𝑦
(0,0) = 0. 

So, the function has partial derivatives in the neighborhood of the point O(0,0).𝑢(𝑥, 𝑦) 

 Let us prove that the function is differentiable at point O(0,0). 𝑢(𝑥, 𝑦) 

To do this, we need to prove that the increment of the function 

∆𝑢 = 𝑢(∆𝑥, ∆𝑦) − 𝑢(0,0) = (∆𝑥2 + ∆𝑦2) sin
1

√∆𝑥2 + ∆𝑦2
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can be represented as 

∆𝑢 =
𝜕𝑢

𝜕𝑥
(0,0)∆𝑥 +

𝜕𝑢

𝜕𝑦
(0,0)∆𝑦 + 𝑜 (√∆𝑥2 + ∆𝑦2), 

i.e., equality is fair (take into account that 
𝜕𝑢

𝜕𝑦
(0,0) =

𝜕𝑢

𝜕𝑦
(0,0) = 0) 

(∆𝑥2 + ∆𝑦2) sin
1

√∆𝑥2 + ∆𝑦2
= 𝑜 (√∆𝑥2 + ∆𝑦2). 

But this equality is obvious. As 

lim
∆𝑥→0
∆𝑦→0

(∆𝑥2 + ∆𝑦2) 𝑠𝑖𝑛
1

√∆𝑥2 + ∆𝑦2

√∆𝑥2 + ∆𝑦2
= lim

∆𝑥→0
∆𝑦→0

(∆𝑥2 + ∆𝑦2) 𝑠𝑖𝑛
1

√∆𝑥2 + ∆𝑦2
= 0. 

 Thus, the function is differentiable at point O(0,0).𝑢(𝑥, 𝑦) 

 Finally, let us prove that the partial derivative is not continuous at point O(0,0). 
𝜕𝑢

𝜕𝑥
(𝑥, 𝑦) 

Obviously, the first term tends to zero at . 2𝑥 𝑠𝑖𝑛
1

√𝑥2+𝑦2
𝑀(𝑥, 𝑦) → 𝑂(0,0) 

The second term 

(−
𝑥

√𝑥2 + 𝑦2
𝑐𝑜𝑠

1

√𝑥2 + 𝑦2
) 

has no limit at . 𝑀(𝑥, 𝑦) → 𝑂(0,0) 

In fact, if a point tends to the point O(0,0) along the ray , then on this ray the specified term is equal 

to𝑀(𝑥, 𝑦)𝑦 = 𝑘𝑥 (𝑘 ≠ 0, 𝑥 > 0) 

−
1

√1 + 𝑘2
𝑐𝑜𝑠

1

𝑥√1 + 𝑘2
 

and obviously has no limit at . So, the limit is not continuous at point O(0,0).𝑥 → 0
𝜕𝑢

𝜕𝑦
(𝑥, 𝑦) 

This typical example shows that partial differential continuity is only a sufficient, but not a necessary 

condition for the differentiability of a function.  

Example 3. Make an equation for the tangent plane to the paraboloid at a point and find the normal to 

the paraboloid at that point.𝑢 = 𝑥2 + 𝑦2𝑁0(1,2,5) 

Decision. Let a point on the plane . Since𝑀0(1,2) − 𝑂𝑥𝑦 

𝜕𝑢

𝜕𝑥
= 2𝑥,

𝜕𝑢

𝜕𝑦
= 2𝑦  

that  

𝜕𝑢

𝜕𝑥
(𝑀0) = 2,

𝜕𝑢

𝜕𝑦
(𝑀0) = 4. 

Taking into account also that and , we obtain the desired equation of the tangent plane𝑢(𝑀0) = 5 

2(𝑥 − 1) + 4(𝑦 − 2) − (𝑢 − 5) = 0, 

or  
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2𝑥 + 4𝑦 − 𝑢 − 5 = 0. 

The vector is normal to the paraboloid at . 𝒏 = {2,4, −1}𝑁0 

Example 4. Find partial derived functions from arguments and .𝑢 = 𝑓(𝑥, 𝑥𝑦, 𝑥𝑦𝑧)𝑥, 𝑦𝑧 

Decision. This function is a complex function of variables and :𝑥, 𝑦𝑧 

𝑢 = 𝑓(𝑥1, 𝑥2, 𝑥3), 

Where is. 𝑥1 = 𝑥, 𝑥2 = 𝑥𝑦, 𝑥3 = 𝑥𝑦𝑧 

Let us denote the partial derivative of the function by the argument , through (the function depends on 

the same arguments as the function , i.e. . . 𝑢 = 𝑓(𝑥1, 𝑥2, 𝑥3)𝑥𝑖𝑓𝑖
′(𝑖 = 1,2,3)𝑓𝑖

′𝑓𝑓𝑖
′ = 𝑓𝑖

′(𝑥, 𝑥𝑦, 𝑥𝑦𝑧) 

Applying the formula [1, p. 191], we get 
𝜕𝑢

𝜕𝑥
= 𝑓𝑖

′ ∙ 1 + 𝑓2
′ ∙ 𝑦 + 𝑓3

′ ∙ 𝑦𝑧, 
𝜕𝑢

𝜕𝑦
= 𝑓2

′ ∙ 𝑥 + 𝑓3
′ ∙ 𝑥𝑧, 

𝜕𝑢

𝜕𝑧
= 𝑓3

′ ∙ 𝑥𝑦. 

Example 5. Find Differential Function:  

(a) At the point  𝑢 = 𝑒𝑥2
+ 𝑦2 + 𝑧2𝑀(0,1,2); 

b) at the point 𝑢 = 𝑓(𝑥 + 𝑦2, 𝑦 + 𝑥2)𝑀(−1,1). 

Decision.  

a) We have,
𝜕𝑢

𝜕𝑥
= 𝑒𝑥2

+ 𝑦2 + 𝑧2 ∙ 2𝑥 
𝜕𝑢

𝜕𝑥
(𝑀) = 0.  

𝜕𝑢

𝜕𝑦
= 𝑒𝑥2

+ 𝑦2 + 𝑧2 ∙ 2𝑦,
𝜕𝑢

𝜕𝑦
(𝑀) = 2𝑐5; 

𝜕𝑢

𝜕𝑧
= 𝑒𝑥2

+ 𝑦2 + 𝑧2 ∙ 2𝑧,  
𝜕𝑢

𝜕𝑧
(𝑀) = 4𝑒5. 

Therefore 

𝑑𝑢|𝑀  =
𝜕𝑢

𝜕𝑥
(𝑀)𝑑𝑥 +

𝜕𝑢

𝜕𝑦
(𝑀)𝑑𝑦 +

𝜕𝑢

𝜕𝑧
(𝑀)𝑑𝑧 = 2 ∙ 𝑒5𝑑𝑦 + 4𝑒5𝑑𝑧. 

b) Write the function 𝑢 = 𝑓(𝑥 + 𝑦2, 𝑦 + 𝑥2) in the form , where . 𝑢 = 𝑓(𝑡, 𝑣)𝑡 = 𝑥 + 𝑦2, 𝑣 = 𝑦 + 𝑥2 

By calculating partial derivatives and , we get .
𝜕𝑢

𝜕𝑥

𝜕𝑢

𝜕𝑦
 

𝜕𝑢

𝜕𝑥
= 𝑓𝑡(𝑥 + 𝑦2, 𝑦 + 𝑥2) ∙ 1 + 𝑓𝑣(𝑥 + 𝑦2, 𝑦 + 𝑥2) ∙ 2𝑥, 

𝜕𝑢

𝜕𝑥
(𝑀) = 𝑓𝑡(0,2) − 2𝑓𝑣(0,2), 

𝜕𝑢

𝜕𝑦
= 𝑓𝑡(𝑥 + 𝑦2, 𝑦 + 𝑥2) ∙ 2𝑦 + 𝑓𝑣(𝑥 + 𝑦2, 𝑦 + 𝑥2) ∙ 1, 

𝜕𝑢

𝜕𝑦
(𝑀) = 2𝑓𝑡(0,2) + 𝑓𝑣(0,2). 

Therefore 

𝑑𝑢|𝑀 =
𝜕𝑢

𝜕𝑥
(𝑀)𝑑𝑥 +

𝜕𝑢

𝜕𝑦
(𝑀)𝑑𝑦 = [𝑓𝑡(0,2) − 2𝑓𝑣(0,2)]𝑑𝑥 + 

[2𝑓𝑡(0,2) + 𝑓𝑣(0,2)]𝑑𝑦. 

The same expression for can be obtained in another way, using the invariance of the form of the first 

differential. 𝑑𝑢|𝑀 

Due to the invariance of the form of the first differential, we have  

𝑑𝑢|𝑀 = = 𝑓𝑡(0,2)𝑑𝑡 + 𝑓𝑣(0,2)𝑑𝑣, 
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where and are the differentials of functions and at point . 𝑑𝑡 𝑑𝑣𝑡 = 𝑥 + 𝑦2𝑣 = 𝑦 + 𝑥2𝑀(−1; 1) 

Since  
𝜕𝑡

𝜕𝑥
(𝑀) = 1, , , , 

𝜕𝑡

𝜕𝑦
(𝑀) = 2

𝜕𝑣

𝜕𝑥
(𝑀) = −2

𝜕𝑣

𝜕𝑦
(𝑀) = 1 

that  

𝑑𝑡|𝑀 = 𝑑𝑥 + 2𝑑𝑦, 𝑑𝑣|𝑀 = −2𝑑𝑥 + 𝑑𝑦 

and we get  

𝑑𝑢|𝑀 = 𝑓𝑡(0,2)(𝑑𝑥 + 2𝑑𝑦) + 𝑓𝑣(0,2)(−2𝑑𝑥 + 𝑑𝑦) = 

= [𝑓𝑡(0,2) − 2𝑓𝑣(0,2)] + [2𝑓𝑡(0,2) + 𝑓𝑣(0,2)]𝑑𝑦, 

which is the same as the equation given above.  

Example 6. Prove that the  

( ) ( ) 22
2

2
121 mm xxxxxxfxf +++== ......,,,  

is differentiable at . ( ) m
m Rxxx  00

2
0
1 ,...,,  

Find the full increment of the function at : ( )00
2

0
1

0
mxxxx ,...,,=   

( ) ( ) ( ) ( )
( )

....

......

...

22
2

2
1

0

2
0
21

0
1

00
2

0
1

202

2
0
2

2

1
0
1

0

2

22
222

mmm

m

mm

xxxxx

xxxxxxx

xxxxxxxf

+++++

+++=+++−

−++++++=

 

If 

mm

mm

xxx

xAxAxA

===

===

 ,...,,

,,,...,

2211

00
22

0
11 222

 

then 

 ( ) mmmm xxxxAxAxAxf +++++++=  ....... 22112211
0

. 

From this it follows that the function differentiated at . 
mRx  0

 

Example 7. Find Partial Derivatives of Functions  

( )
y

x
tgyxf ln, = . 

 Decision.  

y

x
y

y

y

x

y

x
tg

y

x
tg

xx

f

2
sin

21

cos

11
ln

2

==











=



 ; 

y

x
yy

x

y

x

y

x
tg

y

x
tg

yy

f

2
sin

2

cos

11
ln

2
2

2

−
=







−=












=



 .  
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Example 8. Compute Partial Derivatives of Functions 

( ) 22 yxyxf +=, . 

 Decision. Let ( ) ( )00,, yx . Then 

2222

22

2

2

yx

x

yx

x
yx

xx

f

+
=

+
=+




=



  , 

2222

22

2

2

yx

y

yx

y
yx

yy

f

+
=

+
=+




=



 . 

 Let us now suppose that ( ) ( )00,, =yx . By definition 

( ) ( ) ( )
x

x

x

fxf

x

f

xx 


=



−+
=





→→ 00
lim

0,00,0
lim

0,0 , 

( ) ( ) ( )
y

y

y

fyf

y

f

yy 


=



−+
=





→→ 00
lim

0,00,0
lim

0,0 . 

It follows that the function has no partial derivatives at (0,0). 

Example 8. Compute 






 f

r

f
, if the function ( )yxf ,  is differentiable in 2R  and  sin,cos ryrx ==

. 

Decision. Since 

)sin,cos(),(  rrfyxf = . 

By calculating the partial derivative rule of a complex function, we find: 

),(
1

sincos
22 y

f
y

x

f
x

yxy

f

x

f

r

y

y

f

r

x

x

f

r

f




+





+
=




+




=









+









=




  

.cossin
y

f
x

x

f
y

y

f
r

x

f
r

y
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Example 9. Prove that the 
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has partial derivatives  at ( )00, , but is not differentiable at that point. 

 It's clear that,  
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i.e. the function has partial derivatives at the point ( )00,  and is equal to zero.  

 Let's assume the opposite. Let the function be differentiable at (0,0): 
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On the other hand  
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If 0= yx , then 

. 

It follows that in this case 0= yx  the sum is not  zero. And this contradicts  that 00 21 →→  ,

This means that the function is not differentiable at (0,0). 

 

Methodology 

Note that the theory of functions of many variables, especially the theory of partial differential and the 

differentiability of functions in dimensional space, is widely used in almost all areas of mathematics, 

mechanics, and biology. Examples of this are [2-14] research in these areas, based on advanced 

pedagogical technologies, and scientific articles [15-35], where the functions of many variables are 

investigated and applied in practical problems.𝑚 − 

 

Conclusion 

In conclusion, it should be noted that in the proposed methodology for teaching the calculation of 

partial derived functions of many variables, the main attention is paid to the presentation of educational 

materials from simple to complex. Here, special attention is paid to the composition of questions and 

tasks (questions and tasks fully covered this topic) for solving in a practical lesson and independent 

work, as well as active communication with students.  

Independent study of the proposed questions and tasks develops students' skills in calculating partial 

derived functions of many variables. When compiling questions and tasks for independent work, 

student co-authors (who studied the topics in advance) made a large contribution. The scheme of 

teaching the topic proposed in the article (some methods for calculating partial derived functions of 

many variables) has been repeatedly positively assessed by students.  
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